If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+12x-419=0
a = 12; b = 12; c = -419;
Δ = b2-4ac
Δ = 122-4·12·(-419)
Δ = 20256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20256}=\sqrt{16*1266}=\sqrt{16}*\sqrt{1266}=4\sqrt{1266}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{1266}}{2*12}=\frac{-12-4\sqrt{1266}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{1266}}{2*12}=\frac{-12+4\sqrt{1266}}{24} $
| 14x+122=360 | | x-9.7=0.5 | | 6(y+6)+4=88 | | 69+3x=3x-66-15x | | 10x=244.5 | | 11x=135.3 | | 14=2/3(9a-15) | | 27x=1/4 | | 20=9w-5w | | 392.5-5p=10-2.5p | | 9-6(4y-1)=1y+15 | | 11x-135=360 | | 3/4×z-14=-8 | | -5q+2.3=-18.0 | | 4(x-5=)44 | | 1w+3+1w3=w23w29 | | 2r-3/4-8=50 | | 1/4x+9=1 | | 24=m/10+10 | | n+3n=-8 | | 60=x5+ | | 5(y+7)=6(y-4) | | 1.4a−(1.25−0.8a)=1.75−(0.3a−2) | | -6x-15=25 | | 12x-51=15 | | 1x+2x+3=-7x-5 | | -7=-2x+6x-2 | | 1x+2x+3=7x-5 | | 6x-4=13x-13 | | -9p-10=-15p-10 | | 125=6+7(1+4a) | | 3/4x-5=56 |